
Neural scene representation and rendering

S. M. Ali Eslami*†, Danilo J. Rezende†, Frederic Besse, Fabio Viola, Ari S. Morcos, Marta

Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor, David P. Reichert,

Lars Buesing, Theophane Weber, Oriol Vinyals, Dan Rosenbaum, Neil Rabinowitz, Helen King,

Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray Kavukcuoglu, Demis Hassabis

1DeepMind, 5 New Street Square, London EC4A 3TW, UK

*Corresponding author. Email: aeslami@google.com

†These authors contributed equally to this work.

Abstract

Scene representation – the process of converting visual sensory data into concise descriptions –

is a requirement for intelligent behaviour. Recent work has shown that neural networks excel at

this task when provided large labelled datasets. However, removing the reliance on human

labelling remains an important open problem. To this end, we introduce the Generative Query

Network (GQN), a framework within which machines learn to represent scenes using only their

own sensors. The GQN takes as input images of a scene taken from different viewpoints,

constructs an internal representation, and uses this representation to predict the appearance of

that scene from previously unobserved viewpoints. The GQN demonstrates representation

learning without human labels or domain knowledge, paving the way towards machines that

autonomously learn to understand the world around them.

Introduction

Modern artificial vision systems are based on deep neural networks that consume large, labelled

datasets to learn functions that map images to human-generated scene descriptions. They do so

by, for example, categorizing the dominant object in the image (1), classifying the scene type (2),

detecting object bounding boxes (3), or labelling individual pixels into pre-determined categories

(4, 5). In contrast, intelligent agents in the natural world appear to require little to no explicit

supervision for perception (6). Higher mammals including human infants learn to form

representations that support motor control, memory, planning, imagination and rapid skill

acquisition without any social communication, and generative processes have been hypothesised

to be instrumental for this ability (7–10). It is thus desirable to create artificial systems that learn

to represent scenes by modeling data that agents can directly obtain while processing the scenes

themselves (e.g., 2D images and the agent’s position in space), and without recourse to semantic

labels that would have to be provided by a human (e.g., object classes, object locations, scene

types, or part labels) (11).

To that end, we present the Generative Query Network (GQN). In this framework, as an agent

navigates a 3D scene !, it collects " images #$% from 2D viewpoints &$% , which we collectively

refer to as its observations '$ =)*#$%, &$%,-%./,…,1. The agent passes these observations to a GQN

composed of two main parts: a representation network 2 and a generation network 3 (Fig. 1).

The representation network takes as input the agent’s observations and produces a neural scene

representation 4, which encodes information about the underlying scene (we omit scene subscript

! where possible, for clarity). Each additional observation accumulates further evidence about the

contents of the scene in the same representation. The generation network then predicts the scene

from an arbitrary query viewpoint &5, using stochastic latent variables 6 to create variability in

its outputs where necessary. The two networks are trained jointly, in an end-to-end fashion, to

maximize the likelihood of generating the ground-truth image that would be observed from the

query viewpoint. More formally, (i) 7 = 	29('$), (ii) the deep generation network 3 defines a

probability density 39(#|&5, 4) = 	∫ 39(#, 6|&5, 4) >6 of an image # being observed at query

viewpoint &5 for a scene representation 4 using latent variables 6, and (iii) the learnable

parameters are denoted by ?. Although the GQN training objective is intractable owing to the

presence of latent variables, we can employ variational approximations and optimize with

stochastic gradient descent.

The representation network is unaware of the viewpoints that the generation network will be

queried to predict. As a result, it will produce scene representations that contain all information

necessary for the generator to make accurate image predictions (e.g., capturing object identities,

positions, colours, counts and room layout). In other words, the GQN will learn by itself what

these factors are, as well as how to extract them from pixels. Moreover, the generator internalizes

any statistical regularities that are common across different scenes (e.g., typical colours of the

sky, object shape regularities and symmetries, patterns and textures). This allows the GQN to

reserve its representation capacity for a concise, abstract description of the scene, with the

generator filling in the details where necessary. For instance, instead of specifying the precise

shape of a robot arm, the representation network can succinctly communicate the configuration

of its joints, and the generator knows how this high-level representation manifests itself as a fully

rendered arm with its precise shapes and colours. In contrast, voxel (12–15) or point-cloud (16)

methods (as typically obtained by classical structure-from-motion) employ literal representations

and therefore typically scale poorly with scene complexity and size and are also difficult to apply

to non-rigid objects (e.g., animals, vegetation, or cloth).

Rooms with multiple objects

To evaluate the feasibility of the framework, we experimented with a collection of environments

in a simulated 3D environment. In the first set of experiments, we consider scenes in a square

room containing a variety of objects. Wall textures – as well as the shapes, positions and colours

of the objects and lights – are randomised, allowing for an effectively infinite number of total

scene configurations; however, we used finite datasets to train and test the model [section 4 of

(17) for details]. After training, the GQN computes its scene representation by observing one or

more images of a previously unencountered, held-out test scene. With this representation, which

can be as small as 256 dimensions, the generator’s predictions at query viewpoints are highly

accurate and mostly indistinguishable from ground-truth (Fig. 2A). The only way in which the

model can succeed at this task is by perceiving and compactly encoding in the scene

representation vector 4: the number of objects present in each scene, their positions in the room,

the colours in which they appear, the colours of the walls and the indirectly observed position of

the light source. Unlike in traditional supervised learning, GQNs learn to make these inferences

from images without any explicit human labelling of the contents of scenes. Moreover, the

GQN’s generator learns an approximate 3D renderer (in other words, a program that can

generate an image when given a scene representation and camera viewpoint) without any prior

specification of the laws of perspective, occlusion or lighting (Fig. 2B). When the contents of the

scene are not uniquely specified by the observation (e.g., because of heavy occlusion), the

model’s uncertainty is reflected in the variability of the generator’s samples (Fig. 2C). These

properties are best observed in real-time, interactive querying of the generator, (movie S1,

https://youtu.be/G-kWNQJ4idw).

Notably, the model only ever observes only a small number of images from each scene during

training (in this experiment, fewer than 5), yet it is capable of rendering unseen training or test

scenes from arbitrary viewpoints. We also monitored the likelihood of predicted observations of

training and test scenes (fig. S3) and found no noticeable difference between values of the two.

Taken together, these points rule out the possibility of model over-fitting.

Analysis of the trained GQN highlights several desirable properties of its scene representation

network. Two-dimensional t-distributed stochastic neighbour embedding (t-SNE) (18)

visualisation of GQN scene representation vectors shows clear clustering of images of the same

scene despite marked changes in viewpoint (Fig. 3A). In contrast, representations produced by

auto-encoding density models such as variational auto-encoders (VAE) (19) apparently fail to

capture the contents of the underlying scenes [section 5 of (17)]; they appear to be

representations of the observed images instead. Furthermore, when prompted to reconstruct a

target image, GQN exhibits compositional behaviour as it is capable of both representing and

rendering combinations of scene elements it has never encountered during training (Fig. 3B)

despite learning that these compositions are unlikely. To test whether the GQN learns a

factorized representation, we investigated whether changing a single scene property (e.g., object

colour) whilst keeping others fixed (e.g., object shape and position), leads to similar changes in

the scene representation (as defined by mean cosine-similarity across scenes). We found that

object colour, shape, and size; light position; and, to a lesser extent, object positions are indeed

factorized [Fig. 3C; sections 5.3 and 5.4 of (17)]. We also found that the GQN is able to carry

out ‘scene algebra’ [akin to word embedding algebra (20)]. By adding and subtracting

representations of related scenes, we found that object and scene properties can be controlled,

even across object positions [Fig. 4A; section 5.5 of (17)]. Finally, because it is a probabilistic

model, GQN also learns to integrate information from different viewpoints in an efficient and

consistent manner, as demonstrated by a reduction in its Bayesian ‘surprise’ at observing a held-

out image of a scene as the number of views increases [Fig. 4B; section 3 of (17)]. We include

analysis on the GQN’s ability to generalise to out-of-distribution scenes, as well as further results

on modelling of Shepard-Metzler objects in Sections 5.6 and 4.2 of (17).

Control of a robotic arm

Representations that succinctly reflect the true state of the environment should also allow agents

to learn to act in those environments more robustly and with fewer interactions. Therefore, we

considered the canonical task of moving a robotic arm to reach a coloured object, to test the

GQN representation’s suitability for control. The end-goal of deep reinforcement learning is to

learn the control policy directly from pixels; however, such methods require a large amount of

experience to learn from sparse rewards. Instead, we first trained a GQN and used it to succinctly

represent the observations. A policy was then trained to control the arm directly from these

representations. In this setting, the representation network must learn to communicate only the

arm’s joint angles, the position and colour of the object, and the colours of the walls for the

generator to be able to predict new views. Because this vector has much lower dimensionality

than the raw input images, we observed substantially more robust and data-efficient policy

learning, obtaining convergence-level control performance with approximately one-fourth as

many interactions with the environment than a standard method using raw pixels [Fig. 5; section

4.4 of (17)]. The 3D nature of the GQN representation allows us to train a policy from any

viewpoint around the arm and is sufficiently stable to allow for arm joint velocity control from a

freely moving camera.

Partially observed maze environments

Finally, we considered more complex, procedural maze-like environments to test GQN’s scaling

properties. The mazes consist of multiple rooms connected via corridors, and the layout of each

maze and the colours of the walls are randomised in each scene. In this setting any single

observation provides a small amount of information about the current maze. As before, the

training objective for GQN is to predict mazes from new viewpoints, which is possible only if

GQN successfully aggregates multiple observations to determine the maze layout (i.e., the wall

and floor colours, the number of rooms, their positions in space, and how they connect to one

another via corridors). We observed that GQN is able to make correct predictions from new first-

person viewpoints (Fig. 6A). We queried the GQN’s representation more directly by training a

separate generator to predict a top-down view of the maze and found that it yields highly

accurate predictions (Fig. 6B). The model’s uncertainty, as measured by the entropy of its first-

person and top-down samples, decreases as more observations are made [Fig. 6B; section 3 of

(17)]. After about only five observations, the GQN’s uncertainty disappears almost entirely.

Related work

GQN offers key advantages over prior work. Traditional structure-from-motion, structure-from-

depth and multi view geometry techniques (12–16, 22) prescribe the way in which the 3D

structure of the environment is represented (for instance as point clouds, mesh clouds or a

collection of pre-defined primitives). GQN, by contrast, learns this representational space,

allowing it to express the presence of textures, parts, objects, lights and scenes concisely and at a

suitably high level of abstraction. Furthermore, its neural formulation enables task-specific fine-

tuning of the representation via back-propagation, e.g. via further supervised or reinforced deep

learning.

Classical neural approaches to this learning problem – e.g., auto-encoding and density models

(23–28) – are required to capture only the distribution of observed images, and there is no

explicit mechanism to encourage learning of how different views of the same 3D scene relate to

one another. The expectation is that statistical compression principles will be sufficient to enable

classical networks to discover the 3D structure of the environment; however, in practice, they fall

short of achieving this kind of meaningful representation and instead focus on regularities of

colours and patches in the image space.

Viewpoint transformation networks do explicitly learn this relationship; however, they have thus

far been non-probabilistic and limited in scale, e.g., to only rotation around individual objects

where a single view is sufficient for prediction (15, 29–34), or to small camera displacements

between stereo cameras (e.g., (35–37)).

By employing state-of-the-art deep, iterative, latent variable density models (26), GQN is

capable of handling free agent movement around scenes containing multiple objects. In addition,

owing to its probabilistic formulation, GQN can account for uncertainty in its understanding

about a scene’s contents in the face of severe occlusion and partial observability. Notably, the

GQN framework is not specific to the particular choice of architecture of the generation network,

and alternatives such as generative adversarial networks (GANs, e.g., (38)) or auto-regressive

models (e.g., (39)) could be employed.

A closely related body of work is that of discriminative pose estimation (e.g., (40–42)) in which

networks are trained to predict camera motion between consecutive frames. The GQN

formulation is advantageous, as it allows for aggregation of information from multiple images of

a scene (see maze experiments); it is explicitly probabilistic, allowing for applications such as

exploration through Bayesian information gain; and, unlike the aforementioned methods where

scene representation and pose prediction are intertwined, the GQN architecture admits a clear

architectural separation between the representation and generation networks. The idea of pose

estimation is complementary, however – the GQN can be augmented with a second ‘generator’

that, given an image of a scene, predicts the viewpoint from which it was taken, providing a new

source of gradients with which to train the representation network.

Outlook

In this work, we have shown that a single neural architecture can learn to perceive, interpret and

represent synthetic scenes without any human labelling of the contents of these scenes. It can

also learn a powerful neural renderer that is capable of producing accurate and consistent images

of scenes from new query viewpoints. The GQN learns representations that adapt to and

compactly capture the important details of its environment (e.g., the positions, identities and

colours of multiple objects, the configuration of the joint angles of a robot arm, and the layout of

a maze), without any of these semantics being built into the architecture of the networks. GQN

uses analysis-by-synthesis to perform ‘inverse graphics’, but unlike existing methods (43) which

require problem-specific engineering in the design of their generators, GQN learns this

behaviour by itself and in a generally applicable manner. However, the resulting representations

are no longer directly interpretable by humans.

Our experiments have thus far been restricted to synthetic environments for three reasons: (i) a

need for controlled analysis, (ii) limited availability of suitable real datasets, and (iii) limitations

of generative modeling with current hardware. Although the environments are relatively

constrained in terms of their visual fidelity, they capture many of the fundamental difficulties of

vision – namely severe partial observability and occlusion as well as the combinatorial, multi-

object nature of scenes. As new sources of data become available (e.g., (42)) and advances are

made in generative modeling capabilities (e.g., (38, 44)) we expect to be able to investigate

application of the GQN framework to images of naturalistic scenes.

Total scene understanding involves more than just representation of the scene’s 3D structure. In

the future, it will be important to consider broader aspects of scene understanding – e.g., by

querying across both space and time for modeling of dynamic and interactive scenes – as well as

applications in virtual and augmented reality, and exploration of simultaneous scene

representation and localisation of observations, which relates to the notion of ‘Simultaneous

Localisation and Mapping’ (SLAM) in computer vision.

Our work illustrates a powerful approach to machine learning of grounded representations of

physical scenes, and of the associated perception systems that holistically extract these

representations from images, paving the way towards fully unsupervised scene understanding,

imagination, planning and behaviour.

References and Notes:

1. A. Krizhevsky, I. Sutskever, G. E. Hinton, NIPS (2012), pp. 1–9, ImageNet classification

with deep convolutional neural networks (2012).

2. B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, NIPS (2014), pp. 487–495,

Learning deep features for scene recognition using places database (2014).

3. S. Ren, K. He, R. Girshick, J. Sun, NIPS (2015), pp. 91–99, Faster R-CNN: towards real-

time object detection with region proposal networks (2015).

4. R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR (2014), pp. 580–587, Rich feature

hierarchies for accurate object detection and semantic segmentation (2014).

5. M. C. Mozer, R. S. Zemel, M. Behrmann, NIPS (1992), pp. 436–443, Learning to

segment images using dynamic feature binding (1992).

6. J. Konorski, Science 160, 652 (1968), Learning, perception, and the brain (Book reviews:

integrative activity of the brain. An interdisciplinary approach), vol. 160 (1968).

7. D. Marr, Vision: A computational investigation into the human representation and

processing of visual information (Henry Holt and Co., Inc., New York, 1982).

8. D. Hassabis, E. A. Maguire, Trends in cogn. sci. 11, 299 (2007), Deconstructing episodic

memory with construction, vol. 11 (2007).

9. D. Kumaran, D. Hassabis, J. L. McClelland, Trends in cogn. sci. 20, 512 (2016), What

learning systems do intelligent agents need? Complementary learning systems theory

updated, vol. 20 (Elsevier, 2016).

10. B. M. Lake, R. Salakhutdinov, J. B. Tenenbaum, Science 350, 1332 (2015), Human-level

concept learning through probabilistic program induction, vol. 350 (American

Association for the Advancement of Science, 2015).

11. S. Becker, G. E. Hinton, Nature 355, 161 (1992), Self-organizing neural network that

discovers surfaces in random-dot stereograms, vol. 355 (1992).

12. Z. Wu, et al., CVPR (2015), pp. 1912–1920, 3D ShapeNets: a deep representation for

volumetric shapes (2015).

13. J. Wu, C. Zhang, T. Xue, W. Freeman, J. Tenenbaum, NIPS (2016), pp. 82–90, Learning

a probabilistic latent space of object shapes via 3D generative-adversarial modeling

(2016).

14. D. J. Rezende, et al., NIPS (2016), pp. 4996–5004, Unsupervised learning of 3D structure

from images (2016).

15. X. Yan, J. Yang, E. Yumer, Y. Guo, H. Lee, NIPS (2016), pp. 1696–1704, Perspective

transformer nets: learning single-view 3D object reconstruction without 3D supervision

(2016).

16. M. Pollefeys, et al., IJCV 59, 207 (2004), Visual modeling with a hand-held camera, vol.

59 (Springer, 2004).

17. See supplementary materials on Science Online.

18. L. v. d. Maaten, G. Hinton, JMLR 9, 2579 (2008), Visualizing data using t-SNE, vol. 9

(2008).

19. I. Higgins, et al., ICLR (2016), β-VAE: learning basic visual concepts with a constrained

variational framework (2016).

20. T. Mikolov, et al., NIPS (2013). Distributed representations of words and phrases and

their compositionality (2013).

21. A. A. Rusu, et al., arXiv:1610.04286 (2016), Sim-to-real robot learning from pixels with

progressive nets (2016).

22. Y. Zhang, W. Xu, Y. Tong, K. Zhou, ACM Transactions on graphics 34, 159 (2015),

Online structure analysis for real-time indoor scene reconstruction, vol. 34 (2015).

23. D. P. Kingma, M. Welling, ICLR (2013), Auto-Encoding variational Bayes (2013).

24. D. J. Rezende, S. Mohamed, D. Wierstra, ICML (2014), vol. 32, pp. 1278–1286,

Stochastic back-propagation and variational inference in deep latent Gaussian models,

vol. 32 (2014).

25. I. Goodfellow, et al., NIPS (2014), pp. 2672–2680, Generative adversarial nets (2014).

26. K. Gregor, F. Besse, D. J. Rezende, I. Danihelka, D. Wierstra, NIPS (2016), pp. 3549–

3557, Towards conceptual compression (2016).

27. P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, ICML (2008), Extracting and

composing robust features with denoising autoencoders (2008).

28. P. Dayan, G. E. Hinton, R. M. Neal, R. S. Zemel, Neu. comp. 7, 889 (1995), The

Helmholtz machine, vol. 7 (1995).

29. G. E. Hinton, A. Krizhevsky, S. D. Wang, ICANN (Springer, 2011), pp. 44–51,

Transforming auto-encoders (2011).

30. C. B. Choy, D. Xu, J. Gwak, K. Chen, S. Savarese, ECCV (2016), vol. 1, pp. 628–644,

3D-R2N2: A unified approach for single and multi-view 3D object reconstruction, vol. 1

(2016).

31. M. Tatarchenko, A. Dosovitskiy, T. Brox, LNCS (2016), vol. 9911, pp. 322–337, Multi-

view 3D models from single images with a convolutional network, vol. 9911 (2016).

32. F. Anselmi, et al., Theor. comput. scI. 633, 112 (2016), Unsupervised learning of

invariant representations, vol. 633 (2016).

33. D. F. Fouhey, A. Gupta, A. Zisserman, CVPR (2016), 3D shape attributes (2016).

34. A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, T. Brox, IEEE trans. pattern anal.

39, 692 (2017), Learning to generate chairs, tables and cars with convolutional networks,

vol. 39 (2017).

35. C. Godard, O. Mac Aodha, G. J. Brostow, CVPR (2017), Unsupervised monocular depth

estimation with left-right consistency (2017).

36. T. Zhou, S. Tulsiani, W. Sun, J. Malik, A. A. Efros, ECCV (2016), pp. 286–301, View

synthesis by appearance flow (2016).

37. J. Flynn, I. Neulander, J. Philbin, N. Snavely, CVPR (2016), pp. 5515–5524, DeepStereo:

Learning to predict new views from the world’s imagery (2016).

38. T. Karras, T. Aila, S. Laine, J. Lehtinen, arXiv:1710.10196 (2017), Progressive growing

of GANs for improved quality, stability, and variation (2017).

39. A. v. d. Oord, et al., NIPS (2016), Conditional image generation with PixelCNN

Decoders (2016).

40. D. Jayaraman, K. Grauman, ICCV (2015), Learning image representations tied to egomo-

tion (2015).

41. P. Agrawal, J. Carreira, J. Malik (2015), Learning to see by moving (2015).

42. A. R. Zamir, et al., ECCV (2016), pp. 535–553, Generic 3D representation via pose esti-

mation and matching (2016).

43. T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, V. Mansinghka, CVPR (2015), pp. 4390–

4399, Picture: A probabilistic programming language for scene perception (2015).

44. Q. Chen, V. Koltun, ICCV (2017), Photographic image synthesis with cascaded refine-

ment networks (2017).

45. T. T. S. Jaakkola, M. M. I. Jordan, Statistics and computing 10, 25 (1999), Bayesian

parameter estimation via variational methods, vol. 10 (Springer, 1999).

46. D. P. Kingma, J. L. Ba, ICLR (2015), pp. 1–15, Adam: a method for stochastic

optimization (2015).

47. J. Schmidhuber, Trans. autonomous mental dev. 2, 230 (2010), Formal theory of

creativity, fun, and intrinsic motivation, vol. 2 (IEEE, 2010).

48. D. J. C. MacKay, Neural comput. 4, 590 (1992), Information-based objective functions

for active data selection, vol. 4 (MIT Press, 1992).

49. E. Todorov, T. Erez, Y. Tassa, IROS (2012), pp. 5026–5033, MuJoCo: a physics engine

for model-based control (2012).

50. R. N. Shepard, J. Metzler, Science 171, 701 (1971), Mental rotation of three-dimensional

objects, vol. 171 (American Association for the Advancement of Science, 1971).

51. C. Beattie, et al., arXiv:1612.03801 (2016), DeepMind Lab (2016).

52. V. Mnih, et al., ICML (2016), pp. 1928–1937, Asynchronous methods for deep reinforce-

ment learning (2016).

Acknowledgments: We thank Murray Shanahan, Andrew Zisserman, Peter Dayan, Joel Leibo,

Peter Battaglia and Greg Wayne for helpful discussions and advice; Georg Ostrovski,

Nicolas Heess, Daniel Zoran, Vinod Nair, David Silver for reviewing the paper; Keith

Anderson for help creating environments; and the rest of the DeepMind team for their

support and ideas.

 Funding: This research was funded by DeepMind.

Author contributions: S.M.A.E. and D.J.R. conceived the model. S.M.A.E., D.J.R., F.B. and

F.V. designed and implemented the model, datasets, visualisations, figures and videos.

A.S.M. and A.R. designed and performed analysis experiments. M.G. and A.A.R.

performed robot arm experiments. I.D., D.P.R., O.V. and D.R. assisted with maze

navigation experiments. L.B. and T.W. assisted with Shepard-Metzler experiments. H.K.,

C.H., K.G., M.B., D.W., N.R., K.K. and D.H. managed, advised and contributed ideas to

the project. S.M.A.E. and D.J.R. wrote the paper.

Competing interests: The authors declare no competing financial interests. DeepMind has filed

a U.K. patent application (GP-201495-00-PCT) related to this work.

Datasets and materials availability: Datasets used in the experiments have been made available

to download at https://github.com/deepmind/gqn-datasets.

Fig. 1. Schematic illustration of the Generative Query Network. (A) The agent observes

training scene ! from different viewpoints (in this example from &$/, &$@ and &$A). (B) The inputs

to the representation network 2 are observations made from viewpoints &$/ and &$@, and the

output is the scene representation 4, which is obtained by element-wise summing of the

observations’ representations. The generation network, a recurrent latent variable model, uses the

representation to predict what the scene would look like from a different viewpoint &$A. The

generator can only succeed if 4 contains accurate and complete information about the contents of

the scene (e.g., the identities, positions, colours and counts of the objects, as well as the room’s

colours). Training via back-propagation across many scenes, randomizing the number of

observations, leads to learned scene representations that capture this information in a concise

manner. Only a handful of observations need to be recorded from any single scene to train the

GQN. ℎ/, ℎ@, … ℎC are the D layers of the generation network.

A B

r1 r2

r

h1 h2 hL

z

Generation network gRepresentation network f

···

v2 v3

v1

v2v1 v3

Neural scene
representation

Query

Latent
Rendering steps

Predicted
view

+

i

i i
i i i

Observation 1

Observation 3Observation 2

Fig. 2. Neural scene representation and rendering. (A) After having made a single

observation of a previously unencountered test scene, the representation network produces a

neural description of that scene. Given this neural description, the generator is capable of

predicting accurate images from arbitrary query viewpoints. This implies that the scene

description captures the identities, positions, colours, and counts of the objects, as well as the

position of the light and the colours of the room. (B) The generator’s predictions are consistent

with laws of perspective, occlusion, and lighting (e.g., casting object shadows consistently).

When observations provide views of different parts of the scene, the GQN correctly aggregates

this information (scenes 2 and 3). (C) Sample variability indicates uncertainty over scene

contents (in this instance, owing to heavy occlusion). Samples depict plausible scenes, with

complete objects rendered in varying positions and colours (see fig. S7 for further examples).

The model’s behaviour is best visualised in movie format; see movie S1 for real-time, interactive

querying of GQN’s representation of test scenes (https://youtu.be/G-kWNQJ4idw).

Sc
en

e
i=

1

A TruthPredictionObservationsB

Sc
en

e
i=

2
Sc

en
e

i=
3

Sc
en

e
i=

4

v2 v3v1 vq vq

Prediction Truth Prediction Truth

Observation

Prediction Truth Prediction Truth

Observation

C
SamplesObservation

i i i i i

Fig. 3. Viewpoint invariance, compositionality and factorization of the learned scene

representations. (A) t-SNE embeddings. t-SNE is a method for non-linear dimensionality

reduction that approximately preserves the metric properties of the original high-dimensional

data. Each dot represents a different view of a different scene, with colour indicating scene

identity. Whereas the VAE clusters images mostly on the basis of wall angles, GQN clusters

images of the same scene, independent of view (scene representations computed from each

image individually). Two scenes with the same objects (represented by * and †) but in different

positions are clearly separated. (B) Compositionality demonstrated by reconstruction of holdout

shape-colour combinations. (C) GQN factorizes object and scene properties, because the effect

of changing a specific property is similar across diverse scenes (as defined by mean cosine-

similarity of the changes in the representation across scenes). For comparison, we plot chance

factorization, as well as the factorization of the image-space and VAE representations. See

section 5.3 of (17) for details.

B

VAEGQNA

C

*

*

†

†

Target ReconstructionSpheres Reds

This particular model never observed red
spheres but can reconstruct accuratelyTr

ai
ni

ng
 d

at
a

in
cl

ud
es

Si
m

ila
rit

y
be

tw
ee

n
ch

an
ge

 in
re

pr
es

en
ta

tio
n

ac
ro

ss
 s

ce
ne

s
(h

ig
he

r i
s

be
tte

r)

C
haQcH

IP
agHV

HuH

V
A
E

G
Q

1

C
haQcH

IP
agHV

OEjHct

V
A
E

G
Q

1

C
haQcH

IP
agHV

PoVLtLoQ
azLPuth

V
A
E

G
Q

1

C
haQcH

IP
agHV

LLght
azLPuth

V
A
E

G
Q

1

C
haQcH

IP
agHV

Box
hHLght

V
A
E

G
Q

1

−0.5

0.0

0.5

1.0

S
LP

LOa
rL

ty
 E

H
tw

H
H
Q

 c
h

a
Q

g
H
 L
Q

rH
S

rH
VH

Q
ta

tL
o
Q

 a
cr

o
VV

 V
cH

Q
H
V

Fig. 4. Scene algebra and Bayesian surprise. (A) Adding and subtracting representations of

related scenes enables control of object and scene properties via ‘scene algebra’, and indicates

factorization of shapes, colours and positions. Pred, prediction. (B) Bayesian surprise at a new

observation after having made observations 1 to E for E in 1 to 5. When the model observes

images that contain information about the layout of the scene, its surprise (defined as the

Kullback-Leibler divergence between conditional prior and posterior) at observing the held-out

image decreases.

Held out
observation

Previous observations

A B

- =+

Blue
sphere

Red
sphere

Red
triangle

Blue
triangle

- =+

Red
sphere

Blue
sphere

Blue
cylinder

Red
cylinder

- =+

East light
sphere

West light
sphere

West light
triangle

East light
triangle

Pred

Pred

Pred

du
e

to

ob
s

2

du
e

to

ob
s

5

Fig. 5. GQN representation enables more robust and data-efficient control. (A) The goal is

to learn to control a robotic arm to reach a randomly positioned coloured object. The controlling

policy observes the scene from a fixed or moving camera (grey). We pretrain a GQN

representation network by observing random configurations from random viewpoints inside a

dome around the arm (light blue). (B) The GQN infers a scene representation that can accurately

reconstruct the scene. (C) (Left) For a fixed camera, an asynchronous advantage actor-critic

(A3C) reinforcement learning agent (21) learns to control the arm using roughly one-fourth as

many experiences when using the GQN representation, as opposed to a standard method using

raw pixels (lines correspond to different hyper-parameters; same hyper-parameters explored for

both standard and GQN agents; both agents also receive viewpoint coordinates as inputs). The

final performance achieved by learning from raw pixels can be slightly higher for some hyper-

parameters, because some task-specific information might be lost when learning a compressed

representation independently from the RL task as GQN does. Right: The benefit of GQN is most

pronounced when the policy network’s view on the scene moves from frame to frame,

suggesting viewpoint invariance in its representation. We normalize scores such that a random

agent achieves 0 and an agent trained on ‘oracle’, ground-truth state information achieves 100.

A
Pretraining views

B

TruthPredictionObservation

Policy
view

C
GQN representation
Raw pixels
Oracle

Fig. 6. Partial observability and uncertainty. (A) The agent (GQN) records several

observations of a previously unencountered test maze (indicated by grey triangles). It is then

capable of accurately predicting the image that would be observed at a query viewpoint (yellow

triangle). It can accomplish this task only by aggregating information across multiple

observations. (B) In the Eth column, we condition GQN on observations 1 to E, and show

GQN’s predicted uncertainty, as well as two of GQN’s sampled predictions of the top-down

view of the maze. Predicted uncertainty is measured by computing the model’s Bayesian surprise

at each location, averaged over three different heading directions. The model’s uncertainty

decreases as more observations are made. As the number of observations increases, the model

predicts the top-down view with increasing accuracy. See section 3 of (17), fig. S8 and movie S1

B

Pr
ed

ic
te

d
un

ce
rta

in
ty

O
bs

er
va

tio
ns

Vi
ew

po
in

ts

1 2 3 0 1 2 30

Pr
ed

ic
te

d
m

ap
 v

ie
w

sa
m

pl
e

1

Pr
ed

ic
te

d
m

ap
 v

ie
w

sa
m

pl
e

2

A
Prediction Truth Prediction TruthObservations Observations

Decreasing uncertainty Decreasing uncertainty

for further details and results (https://youtu.be/G-kWNQJ4idw). nats, natural units of

information.

Supplementary Materials

Figures S1 – S16

Algorithms S1 – S3

References (S45) – (S52)

Table S1

Movie S1 (https://youtu.be/G-kWNQJ4idw)

Neural Scene Representation and Rendering
Supplementary Materials

1 Model details

1.1 Conditional generative models

Conditional latent variable models implicitly describe densities g✓ (x|y) over datapoints x,
given the conditioning variables y, through a marginalisation over a set of latent variables z:

g✓ (x|y) =
Z

g✓ (x|z,y) ⇡✓ (z|y) dz, (S1)

where g✓ (x|z,y) is a conditional density referred to as the observation model, ⇡✓ (z|y) is a
conditional prior, and ✓ is the set of parameters of the model. Training this model on a dataset
D = {(xi,yi)} entails minimising the negative log-likelihood

L (✓) = �
X

i

ln g✓ (xi|yi) (S2)

= �
X

i

ln

Z
g✓ (xi|zi,yi) ⇡✓ (zi|yi) dzi (S3)

with respect to ✓. For most generative models of interest, it is intractable to optimize the neg-
ative log-likelihood L (✓) directly due to the required integral over the high-dimensional latent
variables z, and we must resort to approximations. In this work we employ variational approx-
imations (45) by instead minimising an upper-bound F to the negative log-likelihood (�F is
also known as the evidence lower bound, or ELBO):

F (✓,�) =
X

i

Z
q� (zi|xi,yi) ln

q� (zi|xi,yi)

g✓ (xi|zi,yi) ⇡✓ (zi|yi)
dzi, (S4)

= �L (✓) +
X

i

KL[q� (·|xi,yi) |p✓ (·|xi,yi)],

� �L (✓)

1

where the density q� (z|x,y) is an approximation to the true posterior density and is parametrised
by the vector � and KL[q� (·|xi,yi) |p✓ (·|xi,yi)] is the KL-divergence between the aproximate
posterior q� (·|xi,yi) and the true posterior p✓ (·|xi,yi). Learning in this formulation corre-
sponds to jointly optimising the model parameters ✓ and variational parameters � to minimise
F (✓,�).

The variational formulation allows for a straightforward optimization algorithm, where the gra-
dients of F (✓,�) with respect to ✓ and � are approximated in an unbiased manner by drawing
a small number of samples from q� (z|x,y). This can be done in a computationally cheap and
unbiased manner due to the integrals being outside the ln (·) non-linearity, and also due to the
re-parametrisation trick (22, 23).

1.2 Generative Query Networks

In the GQN setup we consider training datasets of the form D =
��

xk
i ,v

k
i

�
with i 2 {1, . . . , N}

and k 2 {1, . . . , K}, where N is the number of scenes in the dataset, K is the number of
recorded views of each scene, and xk

i is an RGB image captured from viewpoint vk
i . View-

points are parametrised by a 5-dimensional vector (w,y,p), where w is the three-dimensional
position of the camera, y its yaw and p its pitch, however other parametrisations are also pos-
sible. Position, yaw and pitch are measured with respect to a fixed reference frame. We are
interested in the task of predicting the image xq

i that would be recorded from an arbitrary view-
point vq, given a set of M observations (x1,...,M

i ,v1,...,M
i) from the same scene, for arbitrary

M � 0. That is, the model should support prediction given no observations (i.e., sampling from
its prior), a single observation, or even a larger number of observations than it has encountered
during training.

In the general case, for any finite set of M observations (x1,...,M
i ,v1,...,M

i), it may be impossible
to precisely predict an arbitrary view of a scene, due to the fact that objects occlude themselves
and one another, and that each 2D observation only has finite coverage over 3D space. We
address this challenge by using the framework of conditional generative modelling to train
powerful stochastic generators. Through training, the models will form prior knowledge about
probable configurations of object positions, shapes, lighting, textures and shadows and will use
this knowledge to sample plausible images.

In our setting, the conditioning variables comprise the collection of all observed images x1,...,M
i ,

their respective viewpoints v1,...,M
i and the query viewpoint vq

i . The target variable is the image
xq
i that would be observed from viewpoint vq

i : i.e., x = xq
i .

With this notation we write the generator, prior and inference models as g✓ (x|z,vq, r), ⇡✓ (z|vq, r)
and q� (z|xq,vq, r) respectively, where r = f

�
x1,...,M ,v1,...,M

�
is effectively a summary of the

2

observations and is computed by the scene representation network. The representation network
f
�
x1,...,M ,v1,...,M

�
is defined by the following set of equations:

v̂k = (wk, cos(yk), sin(yk), cos(pk), sin(pk)) (S5)
rk =

�
xk, v̂k

�
(S6)

r =
MX

k=1

rk, (S7)

where
�
xk, v̂k

�
is typically a convolutional network.

The additive aggregation function was found to work well in practice, despite its simplicity.
Since the representation and generation networks are trained jointly, gradients from the gener-
ation network encourage the representation network to encode each observation independently
in such a way that when they are summed element-wise, they form a valid scene representation.

For instance, one strategy that might arise, is for
�
xk, v̂k

�
to transform the content of xk

to form a top-down ‘map’ of the contents of the scene as seen from vk. As evidence for the
presence of objects is summed element-wise across views, the map becomes more confident
and refined about the contents of the scene.

An additional benefit of this aggregation function is that it is permutation invariant, meaning
the order in which observations are made has no effect on the final scene representation. The
additive aggregation function may struggle due to interference, however, if the number of ob-
servations increases beyond a certain point. In our experiments, a plateau in model performance
was observed when the number of context images exceeded 30.

1.3 Representation architecture

We define three possible choices of architecture for
�
xk, v̂k

�
in Fig. S1. We consistently found

the ‘tower’ representation architecture to learn fastest across datasets, which was therefore used
in all experiments unless noted otherwise. Interestingly, the three architectures do not have
the same factorisation and compositionality properties; we identified the ‘pool’ architecture to
be more likely to exhibit view-invariant, factorised and compositional characteristics, and is
therefore the architecture analysed in Fig. 3. See Section 5 for further details.

3

1.4 Generation architecture

We parametrise the conditional densities g✓ (x|z,vq, r) and ⇡✓ (z|vq, r) with deep neural net-
works inspired by recurrent latent Gaussian models (25), where the vector of latent variables
z is split into L groups of latent variables zl , l = 1, . . . , L and the density over the variable
of interest is constructed sequentially. Due to this sequential architecture, the prior ⇡✓ (z|vq, r)
can be written as an auto-regressive density:

⇡✓ (z|vq, r) =
LY

l=1

⇡✓l (zl|vq, r, z<l) , (S8)

where ✓l refers to the subset of parameters ✓ that are used by the conditional density at step l.
The resulting model can be defined by a sequence of conditional computations expressed by the
following equations:

Scene encoder r = f
�
x1,...,M ,v1,...,M

�
(S9)

Initial state (cg0,h
g
0,u0) = (0,0,0) (S10)

Prior factor ⇡✓l (·|vq, r, z<l) = N
�
·
��⌘⇡✓ (h

g
l)
�

(S11)
Prior sample zl ⇠ ⇡✓l (·|vq, r, z<l) (S12)
State update

�
cgl+1,h

g
l+1,ul+1

�
= Cg

✓ (v
q, r, cgl ,h

g
l ,ul, zl) (S13)

Observation sample x ⇠ N
�
xq
��µ = ⌘g✓(uL), � = �t

�
, (S14)

where the convolutional networks ⌘⇡✓ (h
g
l) map its respective inputs to the sufficient statistics

of a Gaussian density (i.e., means and standard deviations) and ⌘g✓ (uL) maps its inputs to the
mean of Gaussian density, and the bulk of the computation at every layer is performed by the
core Cg

✓ , which is a skip-connection convolutional LSTM network defined by the equations

Convolutional LSTM state update
�
cgl+1,h

g
l+1

�
= ConvLSTMg

✓ (v
q, r, cgl ,h

g
l , zl) (S15)

Skip connection state update ul+1 = ul +�
�
hg
l+1

�
, (S16)

and cgl and hg
l are the standard LSTM state variables (output and cell), ConvLSTMg

✓ is a size-
preserving convolutional LSTM network and �

�
hg
l+1

�
is a transposed convolution which has

the effect of up-sampling the image. Note that we use spatial cgl and hg
l variables, to take

advantage of the natural structure of images, and empirically we find this to outperform a fully-
connected architecture. For all variables, the superscript g indicates that the corresponding
variable is specific to the generative process, as opposed to the superscript e which will indicate
below that the variable belongs to the encoder network in the inference process.

In practice we find it beneficial to anneal the per-pixel variance of the observation likelihood,
Eq. (S14), over the duration of training (see Table S1), encouraging the model to focus on large-
scale aspects of the prediction problem in the beginning and only later on the low-level details.

4

Due to the fact that we do not learn per-pixel variances, in figures, we show the mean value
of each pixel conditioned on the sampled latent variables. We specify further implementation
details visually, see Fig. S2.

1.5 Inference architecture

The variational posterior density q� (z|xq,vq, r) is also parametrised by a sequential neural
network, specifically one that shares some of its parameters with the generative network. In
other words, ✓ is a subset of �. In analogy to the prior model, q� (z|xq,vq, r) is written as
an auto-regressive density q� (z|xq,vq, r) =

QL
l=1 q�l

(zl|xq,vq, r, z<l), where �l refers to the
subset of parameters � that are used by the conditional density at step l. The variational posterior
can be expressed by the following equations:

Scene encoder r = f
�
x1,...,M ,v1,...,M

�
(S17)

Generator initial state (cg0,h
g
0,u0) = (0,0,0) (S18)

Inference initial state (ce0,h
e
0) = (0,0) (S19)

Inference state update
�
cel+1,h

e
l+1

�
= Ce

� (x
q,vq, r, cel ,h

e
l ,h

g
l ,ul) (S20)

Posterior factor q�l
(·|xq,vq, r, z<l) = N

�
·
��⌘q� (h

e
l)
�

(S21)

Posterior sample zl ⇠ q�l
(·|xq,vq, r, z<l) (S22)

Generator state update
�
cgl+1,h

g
l+1,ul+1

�
= Cg

✓ (v
q, r, cgl ,h

g
l ,ul, zl) (S23)

Here Ce
� is a computational core dedicated to the inference process defined by a standard convo-

lutional LSTM network. The convolutional network ⌘q� (h
e
l) maps the inference network state to

the sufficient statistics of the variational posterior q�l
(·|xq,vq, r, z<l) for the latent variables zl.

Note that, through the dependence of Ce
� on hg

l , the variational posterior defined by this archi-
tecture constitutes an auto-regressive density over z and is therefore capable of approximating
very complex, multi-modal distributions.

2 Optimisation

As standard in variational approximations, the bound in Eq. (S4) can be decomposed into two
main terms: the reconstruction likelihood and a regularization term,

F (✓,�) = E(x,v)⇠D,z⇠q�

"
� lnN (xq|⌘g✓ (uL)) +

LX

l=1

KL
⇥
N
�
·|⌘q� (h

e
l)
�
||N (·|⌘⇡✓ (h

g
l))
⇤
#
.

(S24)

5

Due to the auto-regressive architecture of the model, the individual contributions of each com-
putational step to the KL term are computed sequentially via Eqs. (S9) to (S23). Note that this
equation is exact, and if we use a finite set of samples to evaluate the expectation, it provides an
unbiased estimator of the bound.

In practice, to produce a numerical value for the bound, we sample from q� in a sequential
manner, obtaining a chain of L samples for each term of the posterior. Although we cannot
compute the sum of all KL terms contributing to the bound analytically, for each lth conditional
KL term, we can compute its value analytically by conditioning on the l � 1 preceding latent
samples. This procedure retains the unbiased nature of the estimator, but has lower variance
than estimating the conditional KL terms using only the samples.

Detailed pseudo-code for an unbiased estimator of Eq. (S24) is provided in Algorithm S2. Op-
timization is performed via adaptive gradient descent (46). Each gradient step is computed
by first sampling a mini-batch of B scenes, each with a random number of M observations
(between 0 and K) from the dataset D. Then a single sample z ⇠ q� (·|x,y) is drawn from
the variational posterior defined by Eqs. (S17) to (S23) for every datapoint at every optimisa-
tion step. This procedure is described in detail in Algorithm S1. The procedure for generating
conditional samples from GQN is detailed in Algorithm S3.

We train each GQN model simultaneously on 4 NVidia K80 GPUs for 2 million gradient steps.
The values of the hyper-parameters used for optimisation are detailed in Table S1, and we show
the effect of model size on final performance in Fig. S4.

3 Bayesian surprise

Bayesian surprise or Information gain measures the number of bits necessary to encode a new
observation given previous observations (47, 48). Formally, given a conditional latent variable
model of the form g✓ (x|z,y) ⇡✓ (z|y) with posterior density p (z|x,y), the information gain
about the latent variable z conditioned on previous available information y provided by a new
observation x is defined as

IG (x,y) = KL [p (·|x,y) ||⇡✓ (·|y)] (S25)
⇡ KL [q� (·|x,y) ||⇡✓ (·|y)] (S26)

⇡
LX

l=1

KL
⇥
N
�
·|⌘q� (h

e
l)
�
||N (·|⌘⇡✓ (h

g
l))
⇤
. (S27)

IG (x,y) in the GQN can be approximated by sampling from the inference model using Eqs. (S9)
to (S23) multiple times and averaging. Information gain is an important tool to quantitatively

6

analyse how much information the model can extract from a set of observations, and answers
the question “How surprised is the model at observing x given it has already observed y”.

In Fig. 4B and Fig. S5 we compute the information gain of GQN as a function of the number
of context views for a single 3D scene and for a fixed new observation. We use 1000 samples
from the inference network per configuration to generate the plots.

The reduction of information gain as new relevant observations are made demonstrates that
GQN can efficiently integrate scene information as it becomes available, taking into account
the rich scene prior learned by its generation network. We also compute the information gain
of GQN as a function of the number of context views for a collection of 50 scenes in Fig. S6,
demonstrating that the reduction of surprise as we increase the number of observations is a
general effect.

A drawback of the information gain measure is that it must be computed for a particular, known
target observation x, which restricts its applicability in practice. A more widely applicable
quantity is the Predicted Information Gain, defined as the expectation of IG (x,y) under the
model:

PIG (y) = Eg✓(x|z,y)⇡✓(z|y) [IG (x,y)] . (S28)

In Fig. 6B and Fig. S8 we compute the predicted information gain of GQN at every location in
a random maze by arranging test viewpoints on a uniform 30⇥ 30 grid covering the maze. For
every point on the grid, we consider 3 different heading directions. The PIG is approximated at
every point by averaging over 50 samples per heading directions. These results quantitatively
demonstrate that GQN is consistently extracting and integrating spatial information about the
layout of the mazes from the provided 2D observations. The reduction of model uncertainty as
it receives more observations is also verified by the reduction in the variability of samples (Fig.
S8).

Our results using IG and PIG suggest that both quantities can reliably measure and detect sur-
prise in GQNs. For instance, these quantities could be used for active vision or spatial explo-
ration, guiding the agent to maximally informative locations in the maze.

4 Experiment details

4.1 Rooms

We consider scenes of a variable number of random objects captured in a square room of size
7⇥7 units. Wall textures, floor textures as well as the shapes of the objects are randomly chosen

7

within a fixed pool of discrete options. There are 5 possible wall textures (red, green, cerise,
orange, yellow), 3 possible floor textures (yellow, white, blue) and 7 possible object shapes
(box, sphere, cylinder, capsule, cone, icosahedron and triangle). Each scene contains 1, 2 or 3
objects.

The positions, sizes and colours of the objects and lights are randomised within a fixed continu-
ous set. Object positions are sampled uniformly randomly at any real-valued location in a 3⇥ 3
square in the centre of the room, and the objects rotate by a real-valued amount around their
vertical axis uniformly at random. Object colours are randomised in HSV space, with hue sam-
pled uniformly between [0, 1], saturation sampled uniformly between [0.75, 1] and value set to
1. The light is positioned at a height of 15 units and its real-valued x and y position is sampled
uniformly inside a 8⇥ 8 square centred at the centre of the room.

Images are rendered using MuJoCo’s default OpenGL renderer (49). In order to capture an
image for each random scene, we sample two points within the room, position the camera at
the first and point it at the second. We sample 2 million scenes and 5 images per scene at a
resolution of 64⇥ 64 in order to construct the dataset. The model is trained by conditioning on
M observations, with M being randomly chosen between 1 and 5 in each mini-batch. We did
not experiment with these numbers and it is likely that the same results could be obtained with
a smaller number of scenes and context images. The dataset is split into train and test scenes at
a 9 to 1 ratio. Further results of the model’s performance on this dataset are shown in Fig. S7.

4.2 Shepard-Metzler objects

We also consider scenes consisting of a single 3D object composed of multiple parts (50), in
order to test GQN’s ability to represent larger combinatorial spaces and to model complex 3D
object shapes. In these experiments, each object is composed of 7 randomly coloured cubes that
are positioned by a self-avoiding random walk in 3D grid. As before, the camera is parametrised
by its position, yaw and pitch, however it is constrained to only move around the object at a fixed
distance from its centre.

Images are rendered using MuJoCo’s default OpenGL renderer (49). We sample 2 million
scenes and 15 images per scene at a resolution of 64⇥ 64 in order to construct the dataset. The
model is trained by conditioning on M observations, with M being randomly chosen between
1 and 15 in each mini-batch. We did not experiment with these numbers and it is likely that
the same results could be obtained with a smaller number of scenes and context images. The
dataset is split into train and test scenes at a 9 to 1 ratio.

The performance of the model on this dataset is shown in Figs. S9 to S10. The GQN is capable
of inferring the 3D structure of the object from even a single image, and is capable of re-

8

rendering the object from any viewpoint with a high degree of accuracy – in most cases the
samples are indistinguishable from ground truth images. When the full configuration of the
object is not uniquely determined by the observation, GQN samples consistent and plausible
explanations. See supplementary video for further results.

4.3 Mazes

We create random mazes using an OpenGL-based DeepMind Lab game engine (51). Each maze
is constructed out of an underlying 7 by 7 grid, with walls falling on the boundaries of the grid
locations. However, the agent can be positioned at any continuous position in the maze. The
mazes contain 1 or 2 rooms, with multiple connecting corridors. The walls and floor textures of
each maze are determined by random uniform sampling from a predefined set of textures.

We sample 2 million scenes and 300 images per scene at a resolution of 64 ⇥ 64 in order
to construct the dataset. The model is trained by conditioning on M observations, with M
being randomly chosen between 1 and 20 in each mini-batch. We did not experiment with these
numbers and it is likely that the same results could be obtained with a smaller number of scenes.
The dataset is split into train and test scenes at a 9 to 1 ratio.

The environment additionally allows us to render the maze from above. We capture these im-
ages and train a separate generator network to produce top-down views of the maze from first-
person observations. That is, the top-down view of the maze is never fed to the network as
an observation, and gradients from the top-down view of the maze are never used to train the
representation network. Further results of the model’s performance on this dataset are shown in
Fig. S8 and in the supplementary video.

4.4 Jaco arm

The Jaco arm reaching task is embedded into the MuJoCo (49) room environment. A MuJoCo
reproduction of the robotic Jaco arm is placed in the middle of the room along with one spherical
target object. The arm has nine joints. As in the previous setup, the appearance of the room is
modified for each episode by randomly choosing a different texture for the walls and floor from
a fixed pool of options. In addition, we modify both colour and position of the target randomly.
Finally, the joint angles of the arm are also initialised at random within a range of physically
sensible positions.

The goal of the RL task is for the hand to reach the target and remain close to it for the remaining
duration of the episode. The reward obtained at every step is a decreasing function of the

9

distance from the hand to the target:

dfinal = 1� tanh2

✓
max

✓
0,

✓
dpalm + dpinch

2
� 0.15

◆
⇥ 10

◆◆
, (S29)

where dpalm and dpinch are the distance from the target to either the palm of the hand or the
pinch site weighted by [1.41, 1.41, 1] along the x, y and z axes, respectively.

In order to carry out the reaching experiments we train two models: first we pre-train a GQN
model on the scenes of the room containing the Jaco arm. We then use the representations from
this model to train an RL agent separately. To ensure that GQN learns a complete representation
of the Jaco-arm space we generate a dataset with a variety of arm positions. We achieve this by
selecting random points in 3D space as targets for a proprioception-driven agent and recording
one random intermediate state from the resulting trajectory. We do this with 50 independently
trained agents to ensure diversity. We sample 4 million scenes and 20 images per scene to
construct the dataset. The model is trained by conditioning on M observations, with M being
randomly chosen between 1 and 7 in each mini-batch. Finally, to avoid having a very large
state space for reinforcement learning we modify the representation network by adding two
fully connected layers after the convolutional layers. These layers reduce the representation
size from 8⇥ 8⇥ 128 to 64⇥ 1.

Once we have trained the GQN model, we train a feed-forward A3C (52) agent from pixels
using nine independent policies for each of the nine arm joints. The only difference to the previ-
ously published setup, apart from the change in environment, is that we modify the architecture
of the A3C baseline input network to be identical to the representation network architecture of
GQN for comparison. Crucially, while GQN is trained using several input images at each step,
we only feed one image at every step during RL training in order to remain close to current
experimental protocols. When training the agent, the pre-trained weights of the representation
network are not updated. We compare our agent to standard A3C without pre-trained weights
by randomly initialising the weights of the input network and updating them during RL training.
To normalise the resulting scores we bound the performance with a random agent from below
and an agent trained on oracle state information from above. The same hyper-parameters were
used to train both groups of agents.

Because the GQN’s scene representation vector has much lower dimensionality than the raw
input images, we observe substantially more robust and data-efficient policy learning, obtaining
convergence-level control performance with approximately 4 times fewer interactions with the
environment than the standard A3C agent without pre-training of weights. Note, in particular,
the sensitivity of the agent to the choice of hyper-parameters when the representation is learned
from scratch, and only using RL. Training using the GQN representation, by comparison, is
significantly more robust to the choice of hyper-parameters.

10

5 Analysis of scene representations

All analyses are performed in the room setting and unless otherwise noted, using the ‘pool’
representation network (see Fig. S1).

5.1 VAE

As a baseline for unconditional image compression, we use the representation learned by a
convolutional ReLU variational autoencoder (22, 23). The VAE encoder network outputs a
diagonal Gaussian density and is defined by a sequence of down-sizing convolutional layers:
64⇥ 64⇥ 3! 32⇥ 32⇥ 64! 16⇥ 16⇥ 128! 8⇥ 8⇥ 512! 1⇥ 1⇥ 256. Similarly, the
VAE decoder network is defined by a sequence of up-sizing convolutional layers: 1 ⇥ 1 ⇥ 256
! 16 ⇥ 16 ⇥ 128! 32 ⇥ 32 ⇥ 512! 64 ⇥ 64 ⇥ 512! 64 ⇥ 64 ⇥ 3. The VAE prior is also
chosen to be a diagonal Gaussian density. The training procedure and hyper-parameters are the
same as for the GQN model. After training the unconditional VAE on the same datasets as the
GQN model, we use the representation learned by the encoder network for the t-SNE analysis
in Fig. 3A, the trajectory analysis in Fig. 3C and Fig. S11A, and the view dependence analysis
in Fig. S11B.

5.2 View dependence

If the GQN learns a view-invariant representation, the representations generated by different
views of the same scene should be similar. It is challenging to interpret similarity metrics in
high-dimensional spaces, however, and therefore we ask instead whether changes in scene or
changes in viewpoint have a greater impact on the scene representation.

To evaluate this property, we first compute the representations resulting from single views of
randomly generated room scenes drawn from the training distribution. Holding all other room
properties constant (floor/wall texture, object shapes/colours/sizes, camera positions), we ran-
domise the positions of all objects, creating a ‘shuffled scene’. Representations of the shuffled
scenes are then computed. As a baseline, representations are also computed using the VAE
model.

As a qualitative test of the scene representation’s view dependence, we reduce the dimension-
ality of the embeddings and visualise them using t-SNE (Fig. 3A). Data is pre-processed by
reducing the dimensionality to 20 using principal components analysis. t-SNE embedding is
performed using a perplexity of 15, early exaggeration of 100, and cosine similarity as the

11

distance metric.

To test the scene representation’s view dependence quantitatively, we measure the cosine dis-
tance between representations of the same scene at different viewpoints (‘intra-scene’), and
between representations of the original scenes and the shuffled scenes at the same and differ-
ent viewpoints (‘inter-scene’). We then plot these distances separately for both the inter- and
intra-scene cases as a function of the angle between the viewpoints (Fig. S11B). This analysis
demonstrates that, for the representations of the VAE and ‘tower’ GQN, the impact of changing
the viewpoint by approximately 40 degrees is equivalent to changing the structure of the scene
itself (e.g., by randomising object positions). In contrast, for the representation of the ‘pool’
GQN, and to a lesser extent, the ‘pyramid’ GQN, the impact of changing scene structure is
consistently greater than that resulting from a change in the viewpoint. We note, however, that
even in the average ‘pool’ GQN, changing the viewpoint still has a significant impact on the
scene representation. Together, these results demonstrate that, while none of the GQN models
are entirely view-invariant, for some GQN models, the configuration of the scene itself has a
greater effect on the representation than the viewpoint.

5.3 Trajectory Analysis

If the representation of different object and scene properties is factorised in GQN, the effect
of changing a single object property should be similar, regardless of other object and scene
properties. To test this, we analyse a series of room images containing a single object, in which
one object property is systematically varied, whilst all others are held constant. For example,
to analyse object colour, we generate a series of room images in which a sphere of a fixed size
at a fixed position with fixed views gradually changes colour. We then generate similar series
for objects with different sets of fixed object properties and views. Importantly, the property of
interest is varied identically across all scenes. The scene representation of each of these images
is then computed, resulting in a one-dimensional ‘trajectory’ through representation space for
each series. Representations are computed for each GQN representation network as well as for
the VAE baseline.

If the representation is factorised, the shapes of these trajectories should be similar. Therefore,
we next approximate the local gradient empirically at each point in the trajectory by simply
calculating the first-order discrete difference as the property of interest is varied. We then cal-
culate the mean pairwise cosine distance across trajectories. If two trajectories have identical
shapes, the mean cosine distance between their local gradients would be 0, while if their shapes
are uncorrelated, the mean cosine distance would be 1. Importantly, this analysis only mea-
sures the shape of the trajectories, and is invariant to differences in the absolute values of each
representation.

12

We perform two critical controls to determine whether the resulting distances are meaningful.
First, to determine chance similarity in representation space, we perform a permutation test
by randomly shifting each trajectory along the property axis by a different amount, thereby
misaligning the trajectories. We then calculate the similarity as above (‘Chance’ in Fig. 3C and
‘Shuffled model’ in Fig. S11A). Second, to determine whether the GQN representation network
factorises object properties or merely maintains the factorisation present in the input images, we
perform the above analysis in pixel space as well (‘Images’ in Fig. 3C and Fig. S11A). To match
the summing operation across representations performed by the GQN representation network,
images are summed prior to this analysis.

We find that neither the VAE nor the ‘tower’ GQN representation network factorise any of the
object properties. Additionally, with the exception of object hue, object properties are not fac-
torised in image-space. However, both the ‘pool’ and ‘pyramid’ GQN representation networks
factorise all object properties to varying extents (Fig. S11A).

5.4 Compositionality

If the GQN learns a factorised, compositional representation, it should exhibit compositional
behaviour. We therefore test GQN’s ability to combine observed object primitives to generate
novel objects. We train an instance of the GQN on a dataset containing red objects and spheres
of various colours, but no red spheres. If the GQN learns to ‘understand’ colour and shape in-
dependently, it should be able to reconstruct views of scenes containing red spheres at inference
time. We find that GQN is able to generate samples containing red spheres, providing an exis-
tence proof that both GQN’s representation and generation networks can exhibit compositional
behaviour (Fig. 3B). Importantly, however, this effect is not completely robust, as red cylinders
are often generated in place of red spheres (in roughly 30% to 50% of samples).

5.5 Scene Algebra

To perform ‘scene algebra’, we compute the GQN representation resulting from multiple inde-
pendent scenes. Unless otherwise specified, all representations are generated from the same set
of views. We perform arithmetic in representation space, adding and subtracting representations
to generate representations which should modify an object in a predictable fashion. For exam-
ple, starting with the representation resulting from a red sphere, we subtract the representation
resulting from a blue sphere and add the representation resulting from a blue cylinder. In this
case, the sphere property and the blue property should each be cancelled out, leaving a repre-
sentation of a red cylinder. Samples are then drawn from the generation network, conditioned
on the new representation.

13

We find that scene algebra generates the correct object modifications for a variety of object
properties, and is able to recombine properties even across object positions (Fig. 4A). However,
scene algebra also fails in several interesting ways. For example, our choice of representation
network architecture appears to not support scene algebra across scenes with different sets of
views, nor can it add scenes with different objects together (Fig. S12).

5.6 Generalisation Failure Modes

In Fig. S13, we train a GQN on objects of varying sizes, colours and shapes as before; however
now we test its performance on a number of out-of-distribution scenes, specifically scenes con-
taining previously unseen objects (half-cylinders, walls and coloured floors). In some cases
(half-cylinders) the model’s performance is surprisingly good, generalising to great effect.
However its renders are inconsistent for strongly out-of-distribution scenes (walls which are
taller than any previously seen object).

In Fig. S14, we investigate the degree to which this generalisation capability is dependent on the
number of context observations. Interestingly, we find that while the GQN’s ability to produce
previously seen objects is largely unaffected by the number of context observations, its ability
to generalise to novel objects is highly dependent on the number of context observations, as the
GQN’s ability to generalise decreases substantially when it has fewer opportunities to observe
the out-of-distribution scene.

In Fig. S15, we add increasing amounts of noise to the images that are provided to the GQN as
observations. We find that, perhaps unsurprisingly, for models trained exclusively on noiseless
images, performance degrades as the degree of noise increases. We expect, however, that the
model could easily overcome this sensitivity by training or fine-tuning on noisy data.

Finally, in Fig. S16, we train GQNs on up to 3 objects as before, but now test their performance
on a number of strongly out-of-distribution scenes with 4 or 7 objects each. We observe that,
depending on the choice of representation network architecture, the model generalises to vary-
ing degrees. Interestingly, while the ‘tower’ representation, which contains a spatially arranged
scene representation, extrapolates quite well, the ‘average pool’ representation, which does not
preserve spatial information and appears to bind object properties in a manner which assumes a
maximum number of objects, struggles most as the number of objects increases.

14

64x64x(7+3)

v x

32x32x32 16x16x64 8x8x128 1x1x256

k=2x2
s=2x2

k=2x2
s=2x2

k=2x2
s=2x2

k=8x8
s=8x8

r

1x1x7

64x64x3

v

x

32x32x256 32x32x128 16x16x(256+7) 16x16x128

k=2x2
s=2x2

k=3x3
s=1x1

k=2x2
s=2x2

k=3x3
s=1x1

r

1x1x7

k=3x3
s=1x1

k=1x1
s=1x1

16x16x256 16x16x256

Concatenate

+

16x16x7

+

A

B

64x64x3

v

x

32x32x256 32x32x128 16x16x(256+7) 16x16x128

k=2x2
s=2x2

k=3x3
s=1x1

k=2x2
s=2x2

k=3x3
s=1x1

r

1x1x7

k=3x3
s=1x1

k=1x1
s=1x1

16x16x256 16x16x256

Concatenate

+

16x16x7

+

C

Pool

1x1x256

Py
ra
m
id

To
w
er

Po
ol

Figure S1: Representation network architecture. Implementation details of three possible
architectures for the representation network, which given an image x and corresponding view-
point v, produces a representation r: (A) Pyramid. (B) Tower. (C) Pool (like Tower, but fol-
lowed by an average pooling layer that reduces the representation size to 1⇥1). All black arrows
represent convolutional layers followed by rectified linear activations (ReLUs), with kernel and
stride indicated by k and s. Convolutions of stride 1 ⇥ 1 are size preserving, whilst all others
are ‘valid’. Red arrows marked with ‘+’ indicate residual connections. When concatenating the
viewpoint v to an image or feature map, its values are ‘broadcast’ in the spatial dimensions to
obtain the correct size. In all cases, when more than one observation is available, the resulting
representations are summed element-wise to form an aggregate representation of the scene.

15

cl

hl

rvq

zl

ul

cl+1

hl+1

zl+1

ul+1

…

…

zL

… uL x~N(η(uL))

Cϴ Cϴ Cϴ
g g g

cl

hl

rvq

ul

cl+1

hl+1

ul+1

concat concat

zl

concat

sigmoidtanhsigmoidsigmoid

tanhx

+x

x

+

Δ
k=4x4
s=4x4

k = 5x5
s = 1x1

5x5
1x1

5x5
1x1

5x5
1x1

k=1x1
s=1x1

ηϴ
g

g

g

g

g

g

g

g

g

ηϴ
π

k=5x5
s=1x1

A

B

Figure S2: Generation network architecture. Implementation details of one possible architec-
ture for the generation network, which given query viewpoint vq and representation r defines
the distribution g✓ (xq|vq, r) from which images can be sampled. Convolutional kernel and
stride sizes are indicated by k and s respectively. Convolutions of stride 1⇥ 1 are size preserv-
ing, whilst all others are ‘valid’. (A) The architecture produces the parameters of the output
distribution through the application of a sequence of computational cores Cg

✓ that take vq and r
as input. At each iteration l, a distribution over the latents zl is computed as a function of hg

l ,
sampled from, and fed as an additional input to the core. (B) Each core is a skip-convolutional
LSTM network, with output hg

l , cell state cgl and ul acting as the skip-connection pathway.

16

A B

C D

Training iterations (millions)

Training iterations (millions)

Training iterations (millions)

Training iterations (millions)

Figure S3: Model generalisation. Each dataset is split into train and test subsets at a ratio of 9 to
1, i.e., a whole scene (e.g., configuration of objects, room layout) and all of its observations are
either present in the train set, or in the test set, but not both. The GQN’s loss is monitored on the
train and test datasets throughout optimisation. Train and test losses closely match for (A) room
(B) maze (C) robot arm (D) Shepard-Metzler environments, ruling out the possibility of over-
fitting to particular scene configurations. Note that generalisation is further demonstrated by
GQN’s ability to generate accurate novel viewpoints, despite only ever observing any particular
training scene from a handful of positions.

17

A B

Training iterations (millions) Training iterations (millions)

Figure S4: Effect of generator size on model performance. We compare several GQN vari-
ants after a fixed number of training iterations. Deeper models perform best, obtaining (A)

higher likelihood (lower ELBO), and (B) lower KL between posterior and conditional prior
upon observing ground-truth images at query viewpoints, however of course they are slower to
train. We also observe that not sharing the weights of the cores across generation steps slightly
improves overall performance. In separate experiments, we found that a GQN trained with a
variational autoencoder (VAE) as generator (5 convolutional encoding layers and 5 convolu-
tional decoding layers) achieves 6.71 (bits/pixel) after the same number of training iterations,
i.e., only marginally stronger than a single-step iterative generator.

18

Held out observation

Previous observations

Held out observation

Previous observations

Previous observations Previous observations

Figure S5: Information gain. For each scene, we plot the model’s Bayesian surprise of a new
observation after having made observations 1 to k for each k in 1 to 5. The model’s surprise
of the held-out observation drops most sharply when it views the scene from a position that
informs it about the position, identity and colour of the object in view. Additional observations
reduce the surprise as the model determines these properties with higher precision by aggregat-
ing information across views. For instance in the first scene (top left), the model is surprised
about the held out observation after having observed 0, 1 or 2 images, however the third im-
age which contains information about the blue cylinder reduces its uncertainty. In the second
scene (top right), observations 2 and 5 both contribute to a reduction in surprise. Errors bars are
computed by sampling multiple times from the generator’s posterior.

19

Figure S6: Average information gain as a function of number of observations. We show the
distribution of information gain estimates averaged across a collection of 50 random scenes in
the room. This demonstrates a general trend towards a reduction in the model’s uncertainty as
the number of observations grows.

20

Prediction Truth Prediction Truth

Observation

Prediction Truth Prediction Truth

Observation

Figure S7: Neural scene representation and rendering. Given a single observation of a test
scene, the representation network produces a neural description of the scene. The generator is
capable of predicting accurate images from arbitrary query viewpoints. This implies that the
scene description captures the identities, counts, positions, colours of the objects, as well as the
position of the light, and the colours of the walls and floor.

21

Pr
ed

ic
te

d
un

ce
rta

in
ty

O
bs

er
va

tio
ns

Vi
ew

po
in

ts

1 2 30

Pr
ed

ic
te

d
m

ap
 v

ie
w

sa
m

pl
e

1

Pr
ed

ic
te

d
m

ap
 v

ie
w

sa
m

pl
e

2

4 5 6 7 8

Pr
ed

ic
te

d
m

ap
 v

ie
w

sa
m

pl
e

3

Pr
ed

ic
te

d
m

ap
 v

ie
w

sa
m

pl
e

4

Decreasing uncertainty

Figure S8: Partial observability and uncertainty. In the kth column, we condition GQN on
observations 1 to k, and show GQN’s predicted uncertainty, as well as four of GQN’s sampled
predictions of the top-down view of the maze. Predicted uncertainty is measured by comput-
ing the model’s predicted information gain at each location, averaged over 3 different heading
directions. This measures how uncertain the model itself thinks it is at every location, and
for instance can be used for exploration. The model’s predicted uncertainty decreases as more
observations are made, which is also evident in the reduction of variability in its top-down
samples. With only a handful of first-person observations, the model is capable of predicting
the top-down view with high accuracy, indicating successful integration of egocentric observa-
tions. Errors often correspond to the precise points at which corridors connect with rooms. See
supplementary video for further results.

22

Only observation

Predictions

Pitch

Yaw

Figure S9: Shepard-Metzler environment. Given a single observation of a test object, the
representation network produces a neural description of it. The generator is capable of predict-
ing accurate images from arbitrary query viewpoints. This implies that the scene description
accurately captures the positions and colours of multiple parts that make up the object. The
model’s predictions are consistent with occlusion, lighting and shading, and are typically indis-
tinguishable from ground-truth.

23

Observation 1 Observation 2 Observation 3

Predictions

Pitch

Yaw

Figure S10: Shepard-Metzler environment. Given 3 observations of a test object, the repre-
sentation network produces a neural description of it. The generator is capable of predicting
accurate images from arbitrary query viewpoints. This implies that the scene description accu-
rately captures the positions and colours of multiple parts that make up the object. The model’s
predictions are consistent with occlusion, lighting and shading, and are typically indistinguish-
able from ground-truth.

24

IPageV ShuIIOed
VAE

VAE ShuIIOed
 tower PodeO

Tower
 PodeO

ShuIIOed average
SooO PodeO

Average
SooO PodeO

ShuIIOed SyraPid
PodeO

PyraPid
PodeO

−1.0

−0.5

0.0

0.5

1.0

1.5

S
iP

iOa
ri

ty
 E

e
tw

e
e
n

 c
h

a
n

g
e
 i
n

re
S

re
Ve

n
ta

ti
o
n

 a
cr

o
VV

 V
ce

n
e
V

OEject trajectorieV

IPagHV ShuIIlHd
VAE

VAE ShuIIlHd
 towHr PodHl

TowHr
 PodHl

ShuIIlHd avHragH
Sool PodHl

AvHragH
Sool PodHl

ShuIIlHd SyraPid
PodHl

PyraPid
PodHl

−0.5

0.0

0.5

1.0

S
iP

ila
ri

ty
 E

H
tw

H
H
n

 c
h

a
n

g
H
 i
n

rH
S

rH
VH

n
ta

ti
o
n

 a
cr

o
VV

 V
cH

n
H
V

HuH trajHctoriHV

IPageV 6huIIled
VA(

VA(6huIIled
 tower Podel

Tower
 Podel

6huIIled average
Sool Podel

Average
Sool Podel

6huIIled SyraPid
Podel

PyraPid
Podel

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

6
iP

ila
ri

ty
 E

e
tw

e
e
n

 c
h

a
n

g
e
 i
n

re
S

re
Ve

n
ta

ti
o
n

 a
cr

o
VV

 V
ce

n
e
V

PoVition trajectorieV (rotation)

IPageV ShuIIled
VAE

VAE ShuIIled
 tower Podel

Tower
 Podel

ShuIIled average
Sool Podel

Average
Sool Podel

ShuIIled SyraPLd
Podel

PyraPLd
Podel

−1.0

−0.5

0.0

0.5

1.0

S
LP

Lla
rL

ty
 E

e
tw

e
e
n

 c
h

a
n

g
e
 L
n

re
S

re
Ve

n
ta

tL
o
n

 a
cr

o
VV

 V
ce

n
e
V

LLght azLPuth trajectorLeV

IPageV 6huIIled
VAE

VAE 6huIIled
 tower Podel

Tower
 Podel

6huIIled average
Sool Podel

Average
Sool Podel

6huIIled SyraPid
Podel

PyraPid
Podel

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

6
iP

ila
ri

ty
 E

e
tw

e
e
n

 c
h

a
n

g
e
 i
n

re
S

re
Ve

n
ta

ti
o
n

 a
cr

o
VV

 V
ce

n
e
V

6cale trajectorieV

IPageV ShuIIled
VAE

VAE ShuIIled
 tower Podel

Tower
 Podel

ShuIIled average
Sool Podel

Average
Sool Podel

ShuIIled SyraPid
Podel

PyraPid
Podel

−1.0

−0.5

0.0

0.5

1.0

1.5

S
iP

ila
ri

ty
 E

e
tw

e
e
n

 c
h

a
n

g
e
 i
n

re
S

re
Ve

n
ta

ti
o
n

 a
cr

o
VV

 V
ce

n
e
V

Box height trajectorieV

A

B

C
os

in
e

di
st

an
ce

 (a
.u

.)

VAE Average pool GQN

View distance (degrees)

Pyramid GQNTower GQN

6020 100 140 1800 40 80 120 160
0.0

0.2

0.4

0.6

0.8

1.0

Intra-scene
Inter-scene

6020 100 140 1800 40 80 120 160
0.0

0.2

0.4

0.6

0.8

1.0

6020 100 140 1800 40 80 120 160
0.0

0.2

0.4

0.6

0.8

1.0

0 40 6020 80 100 120 140 180160
0.0

0.2

0.4

0.6

0.8

1.0

View 1 View 2

Original
scene

Shuffled
scene

Inter-scene

Intra-scene

Intra-scene

Inter-scene

Figure S11: Analysis. (A) To test whether the GQN learns a factorised representation, we
investigate whether changing a single scene property (e.g., object colour) whilst keeping oth-
ers fixed (e.g., object shape and position), leads to similar changes in the scene representation
(Section 5.3). Consistently, the ‘pool’ and ‘pyramid’ representation network result in factorised
representations, while the VAE and ‘tower’ representation network result in joint representa-
tions of object properties (e.g., object shape impacts the way object colour is represented). (B)

Quantitative view dependence analysis demonstrates that for the VAE and ‘tower’ GQN repre-
sentation network, changes in view larger than 40 degrees and changes in scene have similar
impacts on the resulting representation. In contrast, for the ‘pool’ representation network, and,
to a lesser extent, the ‘pyramid’ representation network, changes in scene are consistently more
impactful than changes in view. See Section 5.2 for details.

25

Small blue
sphere

- =+

Red
sphere

Blue
sphere

Blue
triangle

Red
triangle

- =+

Red
cylinder

Blue
cylinder

Blue
sphere

Red
sphere

Pred

Pred

A

- =+

Red
sphere

Blue
sphere

Blue
triangle ?

Pred

D

- =+

Small red
sphere

Large blue
triangle ?

Pred

C

+ =+

Green
cylinder

Blue
cylinder

Red
triangle ?

Pred

B

- =+

Blue
sphere

Red
sphere

Red
triangle

Blue
triangle

Pred

Figure S12: Scene algebra. (A) Additional scene algebra successes. For objects in the same
position, scene algebra operates successfully when inputs are conditioned on different sets of
views. (B)-(D), Examples of scene algebra failures: (B) for the addition of multiple objects, (C)

for objects with different sizes, and (D) across different views and object positions.

26

Prediction 1True Scene

Short Wall

Half Red Floor

Tall Wall

Half Cylinder

Prediction 2 Prediction 3 Prediction 4

5 context images.
Successful
generalisation to
novel object.

5 context images.
Generalisation to
novel object.
Inconsistent
boundaries.

5 context images.
Generalisation to
novel object.
Inconsistent
shadows.

5 context images.
Failure to generalise
to novel object.

A

B

C

D

Figure S13: Out-of-distribution generalisation. We train a GQN on objects of varying sizes,
colours and shapes as before; here, however, we test its performance on a variety of strongly
out-of-distribution scenes. (A) The GQN has never seen a half-cylinder during training, yet
is capable of representing and rendering scenes containing this object successfully. (B) When
presented with a half-red floor (never seen during training), the model is mostly capable of
re-rendering the scene. Small inconsistencies can be seen at the boundary of the red part of
the floor. (C) The model successfully represents and renders a short wall with a similar height
to objects observed during training. Note mostly accurate rendering of the wall’s shadows.
(D) When the wall is substantially taller than any object observed during training, the model
fails to represent and/or render the scene, possibly due to confusion about the wall’s depth.
Interestingly, samples often contain two offset short walls, which when viewed from the proper
angle, may appear to combine as one taller wall.

27

Prediction 1True Scene

Half cylinder
3 context
images

Half cylinder
5 context
images

Half cylinder
1 context

image

Cylinder
1 context

image

Prediction 2 Prediction 3 Prediction 4

For known objects,
renders at new
viewpoints are
accurate, even for
only 1 context
observation.

Unknown object (half
cylinder) but renders
at new viewpoints
are accurate.

Unknown object but
renders at new
viewpoints mostly
accurate.

Unknown object and
only 1 context
image. Renders at
viewpoints far from
context image are
inconsistent.

A

B

C

D

Figure S14: Relationship between generalisation and number of context observations. We
observe that the GQN’s ability to generalise to out-of-distribution scenes is affected by the
number of context images it is allowed to use to compute the scene representation. (A) With
only a single observation, the model successfully renders a familiar object from new viewpoints.
(B) With 5 context observations, the model successfully renders an out-of-distribution object
(half-cylinder) from new viewpoints. As the number of context images is reduced (C-D), the
model’s renders become progressively less consistent. The renders are most accurate from
viewpoints that are closest to the context observations’ viewpoints.

28

Prediction 1True Scene

Noise 0.3

Noise 0.2

Noise 0.5

Noise 0.1

Prediction 2 Prediction 3 Prediction 4

5 context images.
Robust to noise.

5 context images.
Mostly robust to
noise.

5 context images.
Object locations
correct but renders
exhibit artifacts.

5 context images.
Object locations
correct but renders
exhibit significant
artifacts.

A

B

C

D

Figure S15: Noise sensitivity. We train a GQN on noiseless images as before, but test its per-
formance when conditioned on context observation with increasing noise. Gaussian observation
noise with zero mean and standard deviations of 0.1, 0.2, 0.3, and 0.5 (A-D, respectively). The
model’s renders become progressively less consistent as the standard deviation of the noise
increases.

29

Prediction 1True Scene

Average Pool
4 objects

Tower 7
objects

Average Pool
7 objects

Tower 4
objects

Prediction 2 Prediction 3 Prediction 4

5 context images.
Successful renders
at new viewpoints.
Small artifacts in
some renders.

5 context images.
Successful renders
at new viewpoints.

5 context images.
Successful renders
at new viewpoints.
Colour of pink
triangle inconsistent.

5 context images.
Failure to represent
and/or render scene.

A

B

C

D

Figure S16: Generalisation to scenes with more objects than trained. We train GQNs on up
to 3 objects as before; here, however, we test their performance on a number of strongly out-of-
distribution scenes with 4 or 7 objects each. The tower architecture (see Fig. S1) is capable of
generalising to 4 (A) and 7 (B) objects. The average pool architecture is mostly accurate on (C)

4 objects, however performance degrades with (D) 7 objects. The tower architecture’s superior
performance is due to the spatial nature of its scene representation. By contrast, the average pool
architecture’s non-spatial representation appears to bind object properties in a manner which is
dependent on the number of objects in the scene, resulting in poor extrapolation to scenes with
more objects than trained.

30

Algorithm S1: GQN training loop.
Data: Choose dataset D from Room, Jaco, Labyrinth or Shepard-Metzler
Input: Initial parameters ✓ and �. Optimizer parameters µi, µf , n, Smax, �i, �f , �1 and �2.
Output: Learned parameters ✓ and �

1 def SampleBatch(B, M , K):

/* Sample number of views */

2 M ⇠ Uniform(0, K)
/* Initialize data batch */

3 D = {}
4 for b 0 in (B � 1):

/* Sample scene index */

5 i ⇠ Uniform(0, N � 1)
6 for k 0 in (M � 1):

/* Sample view */

7 (xk
i ,v

k
i) ⇠ scene i

8 D D + {(xk
i ,v

k
i)}

/* Sample query view */

9 (xq
i ,v

q
i) ⇠ scene i

10 D D + {(xq
i ,v

q
i)}

/* Training Iterations */

11 for t 0 in (Smax � 1):
12 D SampleBatch(B, M , K)
13 ELBO EstimateELBO(D, �t) (Algorithm S2)

/* Compute empirical ELBO gradients */

14 r✓ELBO,r�ELBO Backprop(ELBO).
/* Update parameters */

15 ✓,� Optimizer(r✓ELBO,r�ELBO, µt)
/* Update optimizer state */

16 µt max
�
µf + (µi � µf)

�
1� t

n

�
, µf

�

/* Pixel-variance annealing */

17 �t max
�
�f + (�i � �f)

�
1� t

n

�
, �f

�

31

Algorithm S2: Generating a sample from the approximate variational GQN posterior and esti-
mating the ELBO.
Input: Observed views {(xk,vk)}, query camera: vq, target image: xq, pixel-variance: �t
Output: Sample from the posterior z ⇠ q� (z|xq,vq, r), empirical estimate of the ELBO

1

2 def EstimateELBO({(xk,vk)}, (vq,xq), �t):
Output: Empirical estimate of the ELBO

3

/* Scene encoder */

4 r 0
5 for k 0 in (M � 1):
6 v̂k (wk, cos(yk), sin(yk), cos(pk), sin(pk))
7 rk

�
xk, v̂k

�

8 r r+ rk

/* Generator initial state */

9 (cg0,h
g
0,u0) (0,0,0)

/* Inference initial state */

10 (ce0,h
e
0) (0,0)

11 ELBO 0
12 for l 0 in (L� 1):

/* Prior factor */

13 ⇡✓l (·|vq, r, z<l) N
�
·
��⌘⇡✓ (h

g
l)
�

/* Inference state update */

14

�
cel+1,h

e
l+1

�
 Ce

� (x
q,vq, r, cel ,h

e
l ,h

g
l ,ul)

/* Posterior factor */

15 q�l
(·|xq,vq, r, z<l) N

�
·
��⌘e✓ (he

l)
�

/* Posterior sample */

16 zl ⇠ q�l
(·|xq,vq, r, z<l)

/* Generator state update */

17

�
cgl+1,h

g
l+1,ul+1

�
 Cg

✓ (v
q, r, cgl ,h

g
l ,ul)

/* ELBO KL contribution update */

18 ELBO ELBO� KL [q�l
(·|xq,vq, r, z<l) ||⇡✓l (·|vq, r, z<l)]

19

/* ELBO likelihood contribution update */

20 ELBO ELBO + logN
�
xq
��µ = ⌘g✓(uL), � = �t

�

32

Algorithm S3: Generating a prediction from GQN.
1 def Generate({(xk,vk)},vq):

Output: Generated image sample x̂q

/* Scene encoder */

2 r 0
3 for k 0 in (M � 1):
4 v̂k (wk, cos(yk), sin(yk), cos(pk), sin(pk))
5 rk

�
xk, v̂k

�

6 r r+ rk

/* Initial state */

7 (cg0,h
g
0,u0) (0,0,0)

8 for l 0 in (L� 1):
/* Prior factor */

9 ⇡✓l (·|vq, r, z<l) N
�
·
��⌘⇡✓ (h

g
l)
�

/* Prior sample */

10 zl ⇠ ⇡✓l (·|vq, r, z<l)
/* State update */

11

�
cgl+1,h

g
l+1,ul+1

�
 Cg

✓ (v
q, r, cgl ,h

g
l ,ul, zl)

/* Image sample */

12 x̂q ⇠ N
�
xq
��µ = ⌘g✓(uL), � = �t

�

33

Name Description Values

µs

Learning rate at training step s with annealing
µs = max

�
µf + (µi � µf)

�
1� s

n

�
, µf

� µi = 5⇥ 10�4

µf = 5⇥ 10�5

n = 1.6⇥ 106

�s

Learning rate as used by the Adam algorithm

�s = µs

p
1��s

2

1��s
1

�1 = 0.9
�2 = 0.999

✏ Adam regularisation parameter ✏ = 10�8

�s

Pixel standard-deviation with annealing
�s = max

�
�f + (�i � �f)

�
1� s

n

�
, �f

� �i = 2.0
�f = 0.7
n = 2⇥ 105

L Number of generative layers 12

B Number of scenes over which each weight update is computed 36

Smax Maximum number of training steps 2⇥ 106

Table S1: List of hyper-parameters. The values of all hyper-parameters were selected by
performing informal search. We did not perform a systematic grid search owing to the high
computational cost.

34

References

45. T. T. S. Jaakkola, M. M. I. Jordan, Statistics and computing 10, 25 (1999), Bayesian pa-

rameter estimation via variational methods, vol. 10 (Springer, 1999).

46. D. P. Kingma, J. L. Ba, ICLR (2015), pp. 1–15, Adam: a method for stochastic optimization

(2015).

47. J. Schmidhuber, Trans. autonomous mental dev. 2, 230 (2010), Formal theory of creativity,

fun, and intrinsic motivation, vol. 2 (IEEE, 2010).

48. D. J. C. MacKay, Neural comput. 4, 590 (1992), Information-based objective functions for

active data selection, vol. 4 (MIT Press, 1992).

49. E. Todorov, T. Erez, Y. Tassa, IROS (2012), pp. 5026–5033, MuJoCo: a physics engine for

model-based control (2012).

50. R. N. Shepard, J. Metzler, Science 171, 701 (1971), Mental rotation of three-dimensional

objects, vol. 171 (American Association for the Advancement of Science, 1971).

51. C. Beattie, et al., arXiv:1612.03801 (2016), DeepMind Lab (2016).

52. V. Mnih, et al., ICML (2016), pp. 1928–1937, Asynchronous methods for deep reinforce-

ment learning (2016).

35

